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ABSTRACT

Extended Kalman filter (EKF) is a promising candidate for
online state-of-charge SOC estimation of battery management
systems due to its simplicity and fast response. However, the
accuracy of the EKF is strongly dependent on the initial SOC
status and the impedance model, which degrades the accuracy.
On the other hand, the long short-term memory (LSTM)
algorithm can estimate the SOC of the battery accurately even
in a uncertain initial SOC condition. However, its required
computation time is so long that individual SOC estimation for
multiple cells is impractical. This paper applies the LSTM
algorithm to calibrate the SOC status and impedance model of
the battery before EKF estimation is used to detect the SOC
status. The proposed algorithm is implemented by Python and is
compared with the conventional EKF method. The results show
that the proposed method improves the accuracy within RMSE
0f 0.00667 and reduced the dependency on initial conditions.

Keywords: Extended Kalman filter, Online SOC estimation,
State-of-Charge (SOC), Long Short-Term Memory (LSTM).

1. INTRODUCTION

State-of-Charge (SOC) represents the remaining available
capacity of the battery, which cannot be measured directly.
When estimating SOC in a battery pack consisting of a large
number of cells, the characteristic of every cell is assumed to be
similar, and then, the SOC of the whole pack is estimated.
Unfortunately, the characteristic of the cells becomes
mismatching during the aging of the cells, especially in the
second-life battery application. Without individual-SOC
monitoring for the cells, the conventional operation algorithm
can lead the cells to be over-charged or over-discharged due to
the battery cell inconsistency. Thereforce, The individual-SOC
of cells has to be online monitored one by one to ensure the
safety of the system [1].

Various methods can be adopted for online SOC estimation.
Among those schemes, Extended Kalman Filter (EKF) is a
promising method due to its simplicity and fast-response feature
[2]-[4]. However, it requires precise initial SOC level and
impedance model estimations, which is another big challenge.
Besides, the impedance model parameters drift from the original
values during the aging of the cells. Thus, EKF requires an
enhancement to overcome the disadvantages. On the other hand,
the long short-term memory (LSTM) algorithm can estimate the
battery SOC accurately even in the unknown initial battery
condition [5]-[6]. However, LSTM is known to require a high
computation burden that prolongs the processing time.

This paper proposes a coordinated algorithm between EKF
and LSTM methods to enhance the accuracy and weaken the
dependency on the initial SOC condition. The algorithm is
presented in Section 2 and is verified in Section 3. Finally, the
conclusion is made in Section 4.

2. PROPOSED METHOD

The conventional EFK method is the most popular method
in online SOC estimation due to its simplicity and fast response.
The estimation starts from the initial state conditions of the
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Fig. 1: Concept of the SOC estimation: (a) EKF
estimation; (b)Proposed method
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Fig.2: Flowchart of the proposed method

battery, which are predicted based on the equivalent circuit of
the battery cell. The second-order Thévenin equivalent model
mostly is used to reflect all electrical behaviors of the battery
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cell. Next, the SOC is estimated by Coulomb counting and is
corrected by EKF. Although the calculation time is fast, the
estimation accuracy is strongly dependent on correctness of the
initial SOC level and the precision of the current sensor. Hence,
a relatively large estimation error sometimes occurs.

To mitigate the issue, an LSTM algorithm is inserted
between Coulomb counting and EKF estimation stages as Fig. 1.
The LSTM is an improved model of Recurrent Neural Network
(RNN) Vanishing Gradient Problem so that the hidden unit acts
as a gate to control the weight of a self-loop. The Self-loop
allows past data to be reflected in current state decisions. And it
makes the gradient creates a path that can flow for a long time.
In other words, gradients do not disappear.

The parameters of LSTM algorithm are calculated by

i = o(W; - [he_q, ] + b)) (0]
fe = o(Welhe—y, %] + by) 2)
0, = o(W,[he_1,x:] + b,) 3)
Co=fi*xCy+ipxC', 4)

C', = tanh (W, - [h,_q, x.] + b.) 5)
hy = O, = tanh (C;) ©6)

where i, is input gate; f; is forget gate; O, is output gate; x; is
input; W; , W, , W, , W, are weight vectors; b; , by , b, , b, are
biases; C;_q is the memory from the previous LSTM unit; C; is
the memory of new update; C'; is candidate memory; o is gate
activation function using sigmoid; h; is the output activation
function.

To increase the accuracy, the LSTM is pre-trained by the
driven data of the battery in the previous operating cycles. The
structure of an LSTM unit is presented in Fig. 2, which is a
recurrent type. LSTM is processed by 3 fully-connected
gates(input, forget, output) with sigmoid activation function to
compute the input gate.

Finally, the SOC is corrected by EKF estimation, based on
the procedure in Fig. 2. Compared with the conventional EKF
estimation, the proposed method has a higher performance for
SOC estimation and can mitigate the uncertain initial battery
state data. By applying a pre-training step by LSTM, the
proposed method can calibrate the uncertain information either
in initial SOC or model paramerters.

3. VERIFICATION TESTS

To verify the performance of the proposed method, 5 charge-
discharge cycling process of a cylindrical Li-ion cell (Samsung
INR 18650-29E 3.6V/2.9A) is assessed by the battery cycler
(Maccor 4300K). Battery is discharged by a constant current of
1C rate and is charged by a CC-CV (4.2V/1C) method. The
battery voltage and current are logged for the SOC estimation.
Before the test, the proposed method is pre-trained by another
driven dataset of the battery cell. The accuracy of the estimation
is assessed by the Root Mean Squared Error (RMSE),

RMSE = JZ(SOCgstimated;SOcTeference)z -

where SOCestimated is predicted SOC value; SOCreference 1S
reference(actual) SOC value; N is total the number of
observation values.

The estimated SOC profiles of the reference and the
proposed method are plotted in Fig. 3. The proposed method has
a higher performance for estimating SOC than the conventional
methods, where the estimated SOC is almost fitted with the
reference value. The error profiles of the estimators are
illustrated in Fig. 4. Due to the pre-training step, the error
becomes very low and RMSE of the proposed method is reduced
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Fig. 4: Comparison of estimation error.

to within 0.00667, while the RMSE of the EKF method is
0.04999.

4. CONCLUSION

In this paper, an enhancement of EKF by utilizing the LSTM
algorithm is proposed. The SOC is estimated by the LSTM
before it is corrected by the EKF estimator. The proposed
method is implemented by the TensorFlow and Python Torch
deep learning platform. The estimation results show a better
accuracy of the proposed method, compared to the conventional
EKF.
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